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ABSTRACT. A major search program is described that has been used to de-
termine a set of five-dimensional K-optimal lattice rules of enhanced trigono-
metric degrees up to 12. The program involved a distributed search, in which
approximately 190 CPU-years were shared between more than 1,400 comput-
ers in many parts of the world.
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1. INTRODUCTION

1.1. Historical Background. A lattice rule Q(A), is a uniform weight numerical
integration rule, for the evaluation of integrals over an s-dimensional unit cube,
which takes as its abscissas those points of an s-dimensional integration lattice A
that lie within the unit cube (see (2) below).

Associated with each lattice rule is its abscissa count, denoted by N(A); this
coincides with the inverse of the order (or density) of the lattice A.

Lattice rules are particularly effective when the integrand function is periodic
with respect to the unit cube and has a high degree of continuity. Consequently,
since their inception, interest has focused on their trigonometric degree.

An integration rule is said to be of enhanced trigonometric degree 6 when it
integrates all trigonometric polynomials of degree § — 1 exactly.

Let £ stand for a subset of s-dimensional lattice rules. An L-optimal rule of
enhanced degree ¢ is a rule belonging to this subset (population) of this enhanced
degree having minimal abscissa count.

Noskov and his collaborators [Nos91] were the first to publish a set of s-dimensional
optimal lattice rules of enhanced degree 4 for all s. (See also [Mys88].) At the same
time, they published some higher-degree sequences of rules. However, they did not
exploit the properties of the dual lattice described later in this paper, and they
confined their treatment to rank 1 rules. These rules are far from optimal. Later
work ([LySe91], [LyS¢92], [LyS¢93],[CoLy01],[LySs04] and [CoGo03]) has exploited
the elegant theory involving the dual lattice.

Nearly all results about moderate-dimensional rules of moderate degree appear
to have been obtained by means of numerical searches. For larger s and 4, the search

The first author’s work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract W-31-109-Eng-38.

1



2 J. N. LYNESS AND TOR SOREVIK

populations become outrageously large. Usually the search has to be confined to
smaller populations; and the resulting rules, occasionally the most economic then
available, cannot be expected to be optimal.

In spite of this situation, significant intellectual and computational effort has
been devoted to finding optimal lattice rules. The present paper describes another
contribution to that effort. Here we follow a path first described by Cools and
Lyness [CoLy01], where the search is confined to a well-defined subset of all lattice
rules, namely, K(s,d), defined in Section 2. There we recall their definition of the set
K(s,d) and describe the basic theory, which, in a five-dimensional context, involves
quintets of facet-pairs.

In Section 3 we describe salient features of our search algorithm. In Section 3.1,
we describe how to exploit some of the symmetry properties of quintets to reduce
significantly the redundancy in the search population. In Section 3.2 we describe
how to apply previously available bounds on N and § to limit the search space.

In Section 4 we briefly describe how to parallelize the code and run it as a
distributed search on Internet-connected computer systems. In section 5 we describe
the behavior of the program.

In Section 6 we present the results of the calculation. These comprise nine new
five-dimensional K-optimal lattice rules of enhanced degree between 5 and 12. For
these values of 4, these five-dimensional rules have a lower abscissa count than any
other published rule known to the authors.

1.2. Background on Integration Lattices and Their Trigonometric De-
gree. An s-dimensional lattice A may be defined in terms of a set of s linearly
independent s-dimensional points, termed generators. Any linear, integer combi-
nation of these generators is a lattice point. Any s x s matrix A, whose s rows
coincide in some order with any set of generators, is called a generator matrix of
the lattice. This lattice may be defined by

x€Aex =XT4; where X € Ay. (1)

Here, Ag is the unit lattice, that is the lattice consisting of all integer points. An
integration lattice is one that contains the unit lattice. Thus it includes all 2°
vertices of the integration region [0,1)%. Only integration lattices may be used to
construct lattice rules.

If=[  fxdx QWf=—— S ). (2)
[0,1)® N(A) x€AN[0,1)¢
The matrix B = (A71)7 is a generator matrix for another lattice, which is called
the dual lattice of A, and is denoted by A*. When A defines an integration lattice,
the elements of A are rational numbers, and B is an integer matrix (one whose
elements are integers)[Lyn89]. The dual lattice plays a major role in the theory of
lattice rules. For example, the discretization error Ef has the expansion

Ef=If-QWf= Y [, (3)
he At
h#0

where f(h) is a Fourier coefficient of the integrand function f(x).
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An integration rule is said to be of trigonometric degree d when it integrates
all trigonometric polynomials of degree d exactly [CoS196]. Its enhanced degree is
defined as 6 = d + 1. It follows from (3) that the strict enhanced degree of Q(A) is

6(A)= min [[hl];. (4)
he A+
h#0
It is also well known (see, e.g., [Lyn89]) that the number of abscissas required
by this lattice rule is

N(4) =] det(4) [~ =| det(B) | . (5)

Every nonsingular integer matrix B defines a dual lattice, and every integer
lattice has at least one nonsingular generator matrix B. Consequently both N and
0 above may be considered to be uniquely defined functions of B. In cases where no
confusion is likely to arise, we condense the notation to reflect this. For example,
by 6(B) we mean the value given by (4) where AL is the lattice generated by B.
Finding an optimal lattice rule of enhanced degree § involves finding a solution to
the minimization problem

Noe(s,8) = min | det(B) |. (6)

2. THE SET K(s,d) AND THE BASIC STRUCTURE OF THE SEARCH

We define (s,d), a set of points all of which lie on the boundary of an s-
dimensional octahedron, as follows:

S
h € O(s,6); |||y =D |hi| =6 and h € Aq. (7)

i=1
In view of (4), any lattice of enhanced degree 6 may have only one point, namely the
origin, inside this octahedron. Intuititively one might expect an optimal lattice to
have a preponderance of points near or on the boundary of this octahedron. This
configuration is discussed in some detail in [CoLy01]. Every member of the set
K(s,0) defined below has one or more generator matrices comprising s generators

on (s, ?).

The three-dimensional octahedron has eight plane faces, or four pairs of opposite
faces. More generally, the set (s, d) is composed of 2° distinct (s — 1)-dimensional
s+6—1

facets or 25~ distinct facet-pairs. Each facet contains ( 1

> lattice points.

There is minor overlap between neighbouring facets.
Let ¢ = (01,09,...,05), where each o; is either +1 or —1. These 2% distinct
values of o can be used to specify one of the 2° facets as follows.

Definition 2.1. ([CoLy01]) Let § be a positive integer. The facet-pair F(s,d, o)
comprises two facets of (s, ). One contains all h satisfying
h € Q(s,6) (8)
and
hi:O'i|hi|; ViZI,Q,...,S. (9)
The other is the opposite facet for which
hi:—ai|hi|; ViZI,Q,...,S. (10)
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In the five-dimensional case, there are precisely 16 distinct facet-pairs. These
are listed and assigned a serial number in Table 1.

TABLE 1. Facet-pairs: The sign pattern of the coordinates of
points on each of the 16 five-dimensional facet-pairs.

Fy F(s,0,+,+,+,+,+)
Fl F(S,(S,—,+,+,+,+)
F2 F(576)+)_)+)+)+)
F3 F(S,(S,—,—,+,+,+)
Fy F(s,0,+,+,—+,+)
Fy  F(s,0,—,+,—,+,+)
Fs  F(s,0,+,—,—,+,+)
F7 F(S,(S,—,—,—,+,+)
FS F(576)+)+)+)_)+)
Fg F(S,(S,—,+,+,_,+)
F10 F(S,6,+,—,+,_,+)
F11 F(S,(S,—,—,-“,_,“‘)
F12 F(576)+)+)_)_>+)
F13 F(S,(S,—,-l—, )_>+)
F14 F(576)+)_)_)_>+)
F15 F(S,(S,—,—,— _,+)

We are now in a position to define the set (s, §) as the set of all lattices generated
by five points each of which is a member of a distinct facet-pair. Since any lattice
in K(s,d) contains points on (s, d), its enhanced degree cannot exceed § and is
generally less than §. A K-optimal lattice may now be defined as follows.

Definition 2.2. A lattice in K(s,d) with enhanced degree equal 6 having the min-
imum abscissa count is said to be a K-optimal lattice rule.

There are many ways of choosing the five distinct facet-pairs. A quintet, defined
below, defines a specified selection of facet-pairs.

Definition 2.3. A quintet, denoted by q(s = 5, 6; N1, No, N3, Ny, Ns), where
0 < Ni < Ny < N3 < Ny < Ny < 15, comprises the set of the five distinct
facet-pairs Fn, ,Fn,,Fn,,Fn, and Fi;.

In the sequel, we suppress the arguments s,d where no confusion is likely to
arise, and we use the abbreviation N = (N1, Na, N3, Ny, N5).

A lattice is said to belong to a quintet g if it can be generated by five points, each
of which belongs to a different facet-pair of that quintet. We denote by Q(s, J; N),
the set of lattices belonging to ¢(s,d; N).

Every lattice in K(s,d) must belong to at least one quintet. The same lattice
may, however, belong to many different quintets. There are 4,368 quintets. Eleven
of these are listed in the central column of Table 2.

Naturally the union of all Q(s,d, N) coincides with K(s, d).
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3. RESTRICTING THE SEARCH SPACE

The scope of the search can be reduced in two different ways. First, symmetry
properties can be used to reduce the total number of quintets it is necessary to
search. Second our search can be organized as a branch-and-bound routine, using
the constraint, 6(B) = § to omit subspaces where 6(B) < §. For the remaining
lattices we describe efficient computation of N(B) and how to take advantage of
upper and lower bounds on N(B) to reduce the number of times §(B) has to be
computed.

3.1. Equivalence Classes of quintets. Let G stand for the group of rotations
and reflections of the axes that takes the five-dimensional unit hypercube into itself.
Let G be a standard 5 x 5 integer matrix representing one of the group operations
in G.

The set of lattices obtained from a specified lattice, A, by rotation and reflection
using individual members of the group, G are said to be symmetric copies of each
other, and collectively they constitute an equivalence class. Since G is a group of
order 3840, there may be up to 1920 members in a particular equivalence class.

Generator matrices B and B of the lattices A(B) and A(B), in the same equiv-
alence class are related by the equation

B =UBG, (11)

where U is a unimodular matrix. As always, premultiplication of B by U changes
only the generator matrix, not the lattice.
When B and B are in the same equivalence class, it follows that

o N =|det(B) |=| det(B) |, and
e §(B) =4(B).
Moreover,
e if B € K(s,0), then B € K(s,6).
In view of these properties the following lemma enables us to greatly reduce the
scope of the search.

Lemma 3.1. If a lattice A € Q = Q(s, 9, (Niy, Niy, Nig, Ni,, Niy)) has a symmet-
ric copy A € Q = Q(s,0,(Nj,, Nj,, Njy, Nj,, Nj,)), then every lattice in Q has a
symmetric copy in Q.

Proof. Let B and B be generator matrices for A and A, constructed by points on
the five facets N;,, Ni,, Niy, N;,, Ni; and Nj,, Nj,, Nj,, Nj,, Nj;, respectively. Then
if A and A belong to the same equivalence class, there exists a G € G such that
B = UBQG. Since by definition every lattice in Q(s, 8, ¢(N;, , Ni,, Niy, Ni,, Ni; ) has
a generator matrix constructed by points from the specified quintet, applying the
same group operations to any of these generator matrices will produce a generator
matrix for a symmetric copy in the quintet ¢(Nj;,, Nj,, Nj,, Nj,, Nj;). O

The vital consequence of this lemma is that the quintets can be assembled into
equivalence classes and that it is sufficient to examine the lattices of only one quintet
in each equivalence class in the search for N,y of K(s,d).

Theorem 3.1. For s =5 there are exactly 11 distinct equivalence classes of quin-
tets.
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TABLE 2. Leading quintets: The 11 distinct equivalence classes
of quintets are identified by their leading quintet, given in the sec-
ond column. In the final column is the number of distinct quintets
in that equivalence class. The facet-pairs are defined in Definition
2.1 and numbered in Table 1.

qo: ¢q(0,1,2,3,4) 480
q: ¢q(0,1,2,4,7) 160
qz2: Q(Oa 1)274)8) 80
gs:  q(0,1,2,4,9) 960
qs:  q(0,1,2,5,6) 480
gs: q(0,1,2,5,10) 192
gs: ¢(0,1,2,5,11) 960
gr: ¢(0,1,2,7,11) 480
gs: ¢(0,1,6,7,10) 240

qo: ¢(0,1,6,10,12) 320
qio* q(07375797 14) 16

One quintet of each equivalence class is listed in Table 2. These are the leading
quintets in a natural lexicographical ordering. For these we introduce the shorthand
notation ¢;; ¢ =0,---, 10.

Proof. The theorem can be established in a constructive way simply by carrying out
a sequence of calculations using the following straightforward algorithm. We set up
a list of the 4,368 quintets and apply in turn all 1,920 symmetry transformations
to the first member of the list, removing from the list all quintets constructed this
way. We take next the first untreated quintet and repeat the process; we continue
in this way until no more untreated quintets remain on the list. The resulting list
contains only the 11 quintets listed in Table 2. We have programmed this tedious,
trivial, and time-consuming computation; the result is reported in the theorem and
in Table 2. O

The corresponding result for quartets is 4, given in [CoLy01] and for sextets
is 131. These, together with the theorem above, were established using a more
sophisticated and efficient program constructed by Dr Cools in 1998.

Restricting our search to only one quintet of each equivalence class reduces the
number of quintets treated from the original 4,368 to 11 and may reduce the overall
cost by a factor of roughly 400.

While running the large search program (described later), we found that for
0 > 8 it became necessary to restrict drastically the search space. We did this
in a somewhat arbitrary way. We reduced the search population from the eleven
quintets (listed in Table 2) to a subset of one of those quintets.

The symbol ¢ denotes the subset of g3 = ¢(5,6;0,1,2,4,9) that includes all of
F,,F,F, and Fy, but only those points of Fy that satisfy 0 < z; < 29 < z3 <
ry < x5 <0,

Definition 3.1. A lattice in q;' with enhanced degree equal § having the minimum
abscissa count, is said to be a KT -optimal lattice rule.
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3.2. The Search Algorithm. Our search space is over all matrices B, represent-
ing lattices belonging to all the eleven leading quintets. We organize our search
space in a tree structure. At level 1 we have the different points on facet Ni. At
level 2 are their children, all combinations of points on facet N; and N»; subsequent
levels are organized in this same way. Each leaf at level 5 then has 5 points taken
from the 5 prescribed facets that constitute a candidate lattice, B. A subtree,
rooted at level k, contains all generator matrices with a fixed combination of the
first k& rows.

Since they belong to K(s;d), all our candidate lattices have §(B) < §. But we
are interested only in those having 6(B) = §. Thus, when treating a particular
node, if we can show that all B in the subtree rooted in this node have §(B) < ¢,
the entire subtree can be discarded. It follows from (4) that §(B) < §(h) = ||hl|}x
for all h € A, other than the origin. In practice, at a level k node we evaluate
d(h) = ||h||; for each of h = b; £ b;; 1 < i < j <k, discarding all matrices B in
the subtree rooted at this node if any §(h) < ¢ is encountered.

This cut-off strategy enables us to avoid at a relatively low cost, the task of
examining the majority of the lattices. The time-consuming part of the program is
concerned with the large number of remaining lattices.

As the computation proceeds, we establish and maintain a list of best-so-far
lattices. The list contains all lattices encountered having abscissa count Ny, the
minimum N of all lattices examined so far.

For a lattice to enter the best-so-far list, the two criteria N(B) < Npsr and
d(B) = ¢ need to be satisfied. If B fails one of these criteria, the quantity needed
for the second criterion, need not to be computed. Computing §(B) is much more
expensive than computing N(B). We first calculate N(B), and only if this is
acceptable need we compute 6(B).

There exist also lower bounds on N(B) for lattices of given dimension s and
enhanced degree §. Thus, if we find N(B) < Njw(s,0), we can conclude that
d(B) < ¢ and can omit the computation of §(B).

A simple lower bound is based on the well-known classical Minkowski [Min11]
result for all lattices, which in this context is

N > Nigi(s,d) = 6%/s! (12)

In a later version of this program we used the Mdller-Mysovskikh bound [M6179]
and [Mys88]. This is based on the underlying set of moment equations and is valid
for all rules of enhanced trigonometric degree 4.

[ 8(8* 4 2087 4 24)/120; & even
N > Nygp(5,0) = { §(6* + 3062 + 89)/120; 6§ odd

The set of B matrices on leaves descending from the same parent have the same
first 4 rows of their B matrix. This can be exploited as follows. At level 4 we
compute the five 4 x 4 minors (m;; j =1,---,5), and at level 5 we evaluate N(B)
using a cofactor expansion

(13)

5
N(B) =1 (=1)bs jm;]. (14)
j=1
In our context, this classical method turns out to be more efficient than using, many
times over, a currently standard algorithm for computing a stand-alone determi-
nant.
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4. A DISTRIBUTED SEARCH

We have parallelized our search in a conventional server-client style. We have
one server that sets up tasks and distributes them to the clients, keeping track of
what has already been completed and, of course, retaining the best-so-far list.

A single task involves processing one subtree rooted at level 2; the input for the
client is just the two first rows of a generator matrix B, the sign pattern to be used
in constructing the next three rows of B, and the current value of Nys¢. The client
is to examine each choice of the last three rows, following a set program based on
the algorithm outline in the previous section. When this has been done, the client
either reports a single possibly optimal lattice (one for which N < Ny4¢), or reports
that it has found none.

The choice of using subtrees rooted at level 2 as our task unit is a pragmatic
one. We have found this results in a good balance between having enough tasks
to distribute, making the algorithm scalable, and having tasks large enough for
the computation time to dominate the communication time. In particular, more
communication could potentially create a bottleneck at the server, which is involved
in all the communication that take place.

Avoiding a bottleneck at the server is crucial for the scaling of our algorithm;
naturally, we must avoid a situation in which clients are kept waiting in line for
the server and are unable to carry out useful computation. For this reason we have
minimised the amount of communication per task. Information on quintets, facet-
pairs, and node description are coded as indices. The clients have lookup tables
corresponding to Table 1 and Table 2 from which they construct the necessary
information on quintets and facet-pairs. In order to find the two upper rows in the
B matrix for given indices, another list of a similar nature is used. These lists are
not communicated. They reside with the client. The short vector of indices that is
communicated is used to locate more extensive data items by the client.

This coding practice of communicating by transmitting only a short list of inte-
gers to the client minimizes communication at the cost of minor extra work by the
clients. The content of the information transmitted is, however, unaltered. At one
point we have admittedly sacrificed information to keep the communication slim.
When a client finds several potential candidates for our best-so-far list, only one is
reported back to the server. This approach reduces not only the communication
but also the subsequent work in storing and maintaining the list at the server.

The time taken to carry out a single task varies significantly. In an extreme case
where the task can be discarded already at level 2 because d(h) < ¢ for h = by — b,
the entire task is completed in milliseconds. Generally, the computation may take
several seconds for § = 5 up to several hours for larger §.

Since so little data is communicated between the server and the client, in partic-
ular for larger d, this is a good example of a coarse-grained parallelism, well suited
for distributed computing on a low-speed, high-latency network.

Hence we organized our program as a distributed search, and in July 1999 a
general invitation was issued to all people with Internet access to take part. Par-
ticipation was effected by visiting the Web page, http://www.ii.uib.no/grisk
and downloading the client program. After being unpacked and started, the client
contacts the server and receives a task description. After completing the compu-
tation of the task, the client reports the result to the server and is assigned a new
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TABLE 3. Summary of the number of tasks computed and the
overall CPU-time used. The three central columns are discussed in
the text. *This is the number of tasks computed when the program
was terminated. The full search over K(s, 12, q;) contains 85,540

tasks.
Search over K(s, )
) T(9) Vpsg(0) v(0)  p(0)  CPU-time
5 15876 4643 1414 1 6 days
6 44100 16966 960 1 179 days
7 | 108900 6558 1885 1 5.5 years
8 | 245025 31798 2400 2 67 years
Search over K(s,§,q3)

T(67 q;_) Vbsf (67 q;_) V(67 q;_) /’L((sa q;_) CPU-time
7 4290 160 117 1 -
8 8910 756 304 2 47 days
9 16445 15 11 1 261 days
10 30030 127 83 1 4.8 years
11 50505 10 10 1 36 years
12| 63101* 207 120 1 76 years

task. A detailed description on the technical details of the implementation is given
in [SeMy01].

In August 2003, after more that four years, the server was taken out of ser-
vice, and the program was terminated. It had consumed in total the equivalent of
approximately 190 CPU-years spread across more than 1,400 computers.

The quoted CPU-time is simply the sum of individual CPU-times as reported
by different clients using individual measuring programs. This crude measure is
included here only to give an idea of the order of magnitude of the overall compu-
tation. It is not a suitable number to relate to system efficiency.

We relied on the cooperation of many clients who voluntarily contributed time
and cycles. We appreciate their time, and we thank them. This situation did have
an effect on the programming. As mentioned above, we were restricted to minimal
memory. And the program was run at lowest priority. But a major consideration
was that the program should need no attention once it was started. Naturally, in
running any program, one notices places where minor improvements are clearly in
order. (In our case, one was the choice of Nj,,, mentioned above. Another involved
an extension of the best-so-far list discussed in the next section.) Improvements of
this type were not initiated.

5. THE PERFORMANCE OF THE SEARCH

As § increases, the computational complexity increases sharply. With our present
code it took roughly a year to complete the search over K (5;d) with § = 8, even with
hundreds of workstations at our disposal. To obtain any results for higher values
of §, we were forced to use a much smaller search population, namely, K (5;6; g3 ).
(See Definition 3.1).

In Table 3 we provide some statistics about the search.
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T(9) is the total number of tasks, and vpsr(d) is the number of items on the
best-so-far list when the calculation for that value of § is completed. Each item
on this list is the generator matrix of a lattice having abscissa count Np,y which,
at this stage, coincides with Ngo. The CPU-time spent to construct this list is
reported in the final column of the table.

Many of the lattices on the best-so-far list are identical lattices, specified by
different generator matrices. v(d) is the number of lattices remaining after the
duplicates have been identified and discarded.

Again, many of these distinct lattices belong to the same equivalence class. u(d)
is the number remaining when all but one from any equivalence class is discarded.
In fact, it was found that for all values of § except one, all the lattices were in the
same equivalence class. The exception occurred for § = 8, where lattices from two
distinct equivalence classes were represented. The number of equivalence classes is
given in the column headed pu(0).

The results given in Table 4 and illustrated in Figure 1 were obtained from the
best-so-farlist in a matter of minutes by using a post-processor to remove duplicates
and retain only one in each equivalence class.

The overall impression from Table 3 is that of extensive redundancy in the com-
putation. However, that is the tip of an iceberg. We have identified two major
components of redundancy, in addition to the comparatively minor situation illus-
trated in the table.

The first component is a consequence of lattice duplication. It is not hard to see
how this redundancy occurs. Dealing with a single quintet, the program examines
all generator matrices that take as their rows one point on each of five different facet-
pairs as specified by the quintet. An individual lattice may have several points on
any particular facet. And in general a different generator matrix of the same lattice
may be constructed using any choice of these points, as long as it uses only one
from each facet pair. (The exceptions include the possibility of a singular matrix
and the generation of a sublattice.) The program calculates individually the degree
of all these different matrices, which in fact represent the identical lattice.

The second component arises from the separate treatment of many members
of the same equivalence class. (The restriction from the 4,368 quintets to 11 has
removed a gigantic number of symmetrically equivalent lattices but not those within
the same quintet.) But each of the symmetrically equivalent lattices in the same
quintet is treated separately; and, of course, each of these lattices is represented
many times by different generator matrices.

Thus, in processing a single task, the client processes many generator matrices
that have an identical abscissa count Nys¢. It retains and returns only one lattice,
the first encountered having this common abscissa count.

The widescale redundancy mentioned above does not show itself in the table. The
number vy, ¢(8) is the number that reach the best-so-far list, a very small proportion
indeed of the number processed. However this list is itself highly redundant. For
each value of 4, only one (or two in the case § = 8) independent lattice has been
discovered.

We note that the description of the algorithm in Section 3.2 introduces the best-
so-far list; the description there may leave the impression that this list, in the end,
contains all the matrices that generate lattices having the optimal abscissa count
Ngo. In fact, it contains only a small selection. This represents a compromise. If
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all had been retained, each client would have had to maintain its own best-so-far
list, which would have to be transferred to the server. The subsequent communica-
tion, storage, and data-handling operations imposed at the server could easily have
created a server bottleneck of the type described in Section 4, adding significantly
to the overall CPU time. At the other extreme, if only one had been retained,
there being effectively no best-so-far list but only a single best-so-far matrix, the
postprocessing time might have been reduced by a matter of minutes, but the CPU
time of the search itself would be essentially as reported.

In both cases, the correct abscissa count Ngo would be obtained, together with
the generator matrix of a rule. (Naturally, all members of this equivalence class are
also optimal rules.) The difference is as follows. In cases where there are optimal
rules belonging to two or more equivalence classes (as in the § = 8 case) the lack of a
best-so-far list means that the search is constrained to miss optimal rules belonging
to all but one equivalence class.

Our compromise has several major advantages. The client need not retain a list;
the information transfer between client and server is short. And the list retained by
the server, while long, does not get out of hand. The final value of Ng o is properly
obtained. The disadvantage is that the search may miss a whole equivalence class
of optimal rules. (In retrospect, while conceding that this is possible, we deem it
highly unlikely to have occurred in the search reported here.)

As mentioned at the end of Section 3.1, for § > 8 we restricted the search to a very
small subset of K (s,d). An appealing feature of the restricted search over K(s, §, ¢3)
is that the final component of the redundancy is significantly reduced. For § = 7
and 8, searches over both sets were carried out. Here we note that 7'(6) > T'(6, ¢ )
and vpsp(8) > vpsp (0,47 ), while u(6) = (6, ¢i). However, the reduced search
found the same optimal lattices with a fraction of the work. We termed these rules
K™T-optimal. We caution, however, that there is no guarantee that the restricted
search has not completely missed all members of some equivalence class containing
the K-optimal rule.

6. RESULTS OF THE SEARCH

Our results are displayed in Table 4. These are nine five-dimensional lattice
rules of enhanced degrees between 5 and 12. The first five are K-optimal rules (see
Definition 2.2); the next four are K+-optimal. The entries for § = 12 report the
status of an incomplete search (approximately 3/4 of the search). At this point the
search was terminated when the server was taken out of service.

The lattices are specified by the generator matrix of the dual lattice in Hermite
Normal Form. Naturally only one lattice for each equivalence class is listed. Fol-
lowing convention this is the first one in a lexicographical order, called the senior
lattice of this equivalence class (see [LySo093]).

A dimensionless measure for the quality of a lattice rule is provided by the rho-
indez, defined as

65
A thorough discussion of the rho-index is given in [Lyn03]. A lower bound on N
provides an equivalent upper bound on p(A). The bound corresponding to Nyg
is denoted as paprg. The best previously known set of five-dimensional rules was

(15)
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generated by circulant matrices [CoGo03], and these values are also shown in the
table.

Figure 1 displays the rho-indices of all the rules in Table 4. This figure incorpo-
rates the information in the final three columns of Table 4 allowing an immediate
visual comparison of rules.

7. CONCLUSIONS

The exhaustive search for five-dimensional K-optimal rules presented in this
paper produced new rules better than previously known rule for enhanced degree
5 through 12.

This effort was made possible through a huge Internet-based search, which proved
very efficient for this computation. However, even with the enormous computational
power available to us through distributed Internet search, we reached a ceiling for
what seems to be practically possible at § = 8 for the complete search and § = 12
for the restricted search.

When terminated, the program had consumed in total the equivalent of approxi-
mately 190 CPU-years spread across more than 1,400 computers during a four-year
period. It is difficult to imagine this amount of computing power being awarded
for this project by an individual supercomputing center.
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FIGURE 1. The rho-indices for three sets of rules. This information
taken from the final three columns of Table 4. The two discontin-
uous lines connect pgo for even values of & and for odd values,
respectively.



FIVE-DIMENSIONAL K-OPTIMAL LATTICE RULES

TABLE 4. Five-dimensional K-optimal lattice rules.

Column 3

contains the rank of the rule and the number of distinct members
of the equivalence class. Column 4 contains the abscissa count (and
rho-index) of the K-optimal rule. Columns 5 and 6 contain corre-
sponding information for hypothetical optimal rules based on the
Méller-Mysovskikh bound (13) and for available optimal circulant

rules [CoGo03].

generator matrix | v/ rank

Nko/pro

NuEe/pmE

NCir/pCir

0 00 4

1920
1

69
0.3774

61
0.4269

71
0.3668

1920

110
0.5891

102
0.6353

124
0.5226

1920

301

301
0.4653

231
0.6063

363
0.3858

61
101
157
448

1920

448
0.6095

360
0.7585

484
0.5642

15
35
24
104
112

480

448
0.6095

360
0.7585

484
0.5642

36
26
81
64
120

480

SO HENFHO R, OO O OOOOIOH OO oI O OO

960
0.5126

681
0.7226

1023
0.4810

10

41
51
321
389
1306

1920

1306
0.6381

1002
0.8317

1322
0.6304

11

40
406
943
922

2461

1920

2461
0.5453

1683
0.7974

2913
0.4607

12

243
395
370
930
1600

1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0 1920
0
0

COOoOHOCOOROICDOOHOlooorRroOloooROlocoo OO R OO O~ O
COHOOCOoOHOOOCOROQYocor~ro0o|loo~o0ocoRrooloo~oo|loo~o o

ON = OO OODOoOIOHROOOo

3200
0.6480

2364
0.8772

3844
0.5394

13
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